Pruning Derivative Partial Rules During Impact Rule Discovery

نویسندگان

  • Shiying Huang
  • Geoffrey I. Webb
چکیده

Because exploratory rule discovery works with data that is only a sample of the phenomena to be investigated, some resulting rules may appear interesting only by chance. Techniques are developed for automatically discarding statistically insignificant exploratory rules that cannot survive a hypothesis with regard to its ancestors. We call such insignificant rules derivative extended rules. In this paper, we argue that there is another type of derivative exploratory rules, which is derivative with regard to their children. We also argue that considerable amount of such derivative partial rules can not be successfully removed using existing rule pruning techniques. We propose a new technique to address this problem. Experiments are done in impact rule discovery to evaluate the effect of this derivative partial rule filter. Results show that the inherent problem of too many resulting rules in exploratory rule discovery is alleviated.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rule Pruning in Associative Classification Mining

Classification and association rule discovery are important data mining tasks. Using association rule discovery to construct classification systems, also known as associative classification, is a promising approach. In this paper, we survey different rule pruning methods used by associative classification techniques. Furthermore, we compare the effect of three pruning methods (database coverage...

متن کامل

Discarding Insignificant Rules during Impact Rule Discovery in Large, Dense Databases

Considerable progress has been made on how to reduce the number of spurious exploratory rules with quantitative attributes. However, little has been done for rules with undiscretized quantitative attributes. It is argued that propositional rules can not effectively describe the interactions between quantitative and qualitative attributes. Aumann and Lindell proposed quantitative association rul...

متن کامل

Further Pruning for Efficient Association Rule Discovery

The Apriori algorithm’s frequent itemset approach has become the standard approach to discovering association rules. However, the computation requirements of the frequent itemset approach are infeasible for dense data and the approach is unable to discover infrequent associations. OPUS AR is an efficient algorithm for association rule discovery that does not utilize frequent itemsets and hence ...

متن کامل

Interestingness and Pruning of Mined Patterns

We study the following question: when can a mined pattern, which may be an association, a correlation, ratio rule, or any other, be regarded as interesting? Previous approaches to answering this question have been largely numeric. Speciically, we show that the presence of some rules may make others redundant, and therefore uninteresting. We articulate these principles and formalize them in the ...

متن کامل

A New Classification-Rule Pruning Procedure for an Ant Colony Algorithm

This work proposes a new rule pruning procedure for Ant-Miner, an Ant Colony algorithm that discovers classification rules in the context of data mining. The performance of Ant-Miner with the new pruning procedure is evaluated and compared with the performance of the original Ant-Miner across several datasets. The results show that the new pruning procedure has a mixed effect on the performance...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005